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Abstract—This paper discusses a practical strategy for 

reducing wireless network interference by leveraging graph 

coloring techniques. In densely populated wireless 

environments, overlapping signals from multiple access points 

(APs) can result in signal disruption. In our model, each AP 

will be represented as a vertex in a graph, and an edge between 

any two vertices indicates possible interference. To better 

reflect real world signal behavior, we construct a weighted 

graph based on the Euclidean distance between APs and apply 

a distance threshold to determine which APs are likely to 

interfere. This filtered interference graph is then colored using 

the Welsh-Powell algorithm, assigning wireless channels (as 

colors) to APs such that adjacent vertices receive different 

assignments. A simulation involving six APs demonstrates the 

effectiveness of applying graph theory concepts to address real 

world challenges in wireless communications.   

Keywords—graph coloring; interference reduction; wireless 

network; weighted graph; Welsh-Powell algorithm. 

I.  INTRODUCTION (HEADING 1) 

Wireless networks play a significant role in modern 
communication systems, enabling the transmission of data 
over radio frequencies without using physical cables. These 
networks typically consist of multiple access points (APs) 
that broadcast signals within a limited radius. In 
environments, where several APs are installed in proximity, 
such as apartment buildings, educational institutions, or 
offices, signal overlap is inevitable. It causes interference, 
which can significantly degrade the quality of services, 
including dropped connections, reduced data throughput, and 
higher latency. 

One key method of interference mitigation is channel 
assignment—allocating different frequency channels to APs 
to prevent overlapping usage. However, the limited number 
of available channels and varying distances between APs 
make this problem non-trivial. This is when graph theory 
from math discrete becomes a valuable tool. 

The channel allocation issue can be abstracted as a graph 
coloring problem, where APs are represented as vertices, and 
edges are drawn between APs that may interfere. To make 
this model more realistic, we use a weighted graph based on 
the Euclidean distance between APs and only connect APs 
that have distance less than the threshold. Each vertex will be 

colored with no two same vertices share the same color, 
thereby reducing the channel interference. 

In this work, we apply the Welsh Powell graph coloring 
algorithm to this problem. This greedy algorithm is well-
suited for such applications as it prioritizes highly connected 
nodes and assign colors in a structured way. 

II. BASIC THEORY 

A. Graph Theory 

In general, graph is defined as G = (V,E) with V as 
vertices and E as edges. V is a set of non-empty vertices, 
while E is a set of edges which connect a pair of vertices. In 
short, a graph must consist at least one vertex, but it is 
allowed to not have any edges at all. Additionally, the 
number of edges connected to that vertex is defined as 
degree.There are two types of graphs, namely simple graph 
and unsimple-graph. As it is sound, simple graph means that 
there are not any loops or multiple edges, whereas unsimple-
graph has the opposite definition of simple graph.  

 

Fig  1. Simple and Unsimple graphs examples 

(source : 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf) 

 
Graph G1 shows the instance of simple graph, whilst G2 

and G3 represent the usimple graph. From G2, the edges e3 = 
(1,3) and e4 = (1,3) are known as multiple or parallel edges 
because these two edges are connecting the same two 
vertices (1 and 3). Furthermore, in G3, e8 = (3,3) is called as a 
loop because it starts and ends at the same vertex. 

Unsimple graph is divided into two categories, multi-

graph which has multiple edges, but loops are not permitted 

and pseudo-graph which is allowed to contain both parallel 

edges and loops. 
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Fig  2. Types of unsimple graph 

(source : 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf) 

Lastly, based on orientation of direction, there are 

undirected graphs and directed graphs. The difference 

between them is that in every edge of directed graph 

equipped with direction or an arrow. 

 
Fig  3. Directed graph examples 

(source : 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf) 
 

B. Adjacency Matrix 

There are three ways to represent the graphs, namely 
adjacency matrix, incidency matrix, and adjacency list. 
However, in this paper, we simply apply adjacency matrix 
and list. A graph is called adjacency when two vertices are 
directly connected with an edge. Each element aij of the 
matrix is defined as 1 if vertex i is adjacent (connected) to 
vertex j, and 0 if they are not connected. This matrix is useful 
for understanding the structure of both undirected and 
directed graphs. 

 

Fig  4. Simple graph in adjacent matrix 

(source: https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/) 

 

 
Fig  5. Directed graph in adjacent matrix 

(source: https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/) 
 

In the case of a simple (undirected) graph, the adjacency 
matrix is symmetric. For example, in the graph with vertices 
A, B, C, and D, the matrix shows that A is connected to B, 
C, and D; C is also connected to D; and so on. Since the 
connections go both ways in an undirected graph, if A is 
connected to B, then B is also connected to A. Hence, the 
matrix is mirrored along its diagonal. 

On the other hand, for a directed graph, the adjacency 
matrix does not need to be symmetric. Here, each entry aij

indicates a directed edge from vertex i to vertex j. For 
instance, vertex W has directed edges to W itself (a loop), as 
well as to X, Y, and Z. Meanwhile, vertex Z has outgoing 
edges to W and X. This directed relationship is clearly 
reflected in the matrix, where rows represent the source 
vertices and columns represent the destination vertices. 

C. Adjacency List 

Another way to represent the graph is using an adjacency 
list. Unlike the adjacency matrix, which uses 2D array, an 
adjacency list represents a graph as a collection of lists which 
contain the vertices that are directly connected. For instance, 
in an undirected graph, if vertex A is connected to vertices B 
and C, then the adjacency list will have an entry for A listing 
B and C, and entries for B and C listing A. 

 

Fig  6. Simple graph in adjacent list 

(source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/21-Graf-Bagian2-2024.pdf) 

 

D. Isomorphic Graph 

Two graphs that are structurally the same but look 
different geometrically are called isomorphic graphs. 
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Fig  7. Isomorphic graph examples 

(source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/21-Graf-Bagian2-2024.pdf) 

 

Graph G1 and G2 are said to be isomorphic because there is 

a one-to-one correspondence between their vertices and 

between their edges, such that the adjacent relationships are 

preserved. In other words, if an edge in graph G1 connects 

vertices u and v, then the corresponding edge e’ in graph G2 

must connect the corresponding vertices u’ and v’. 

 

E. Graph Coloring  

In general, there are two ways to color a graph: edge 
coloring and vertex coloring. However, in this paper, we will 
focus solely on vertex coloring, as it directly relates to the 
assignment of wireless channels in a network. In vertex 
coloring, each vertex is assigned to a color, and two adjacent 
vertices are not allowed to share the same color 

The primary objective of graph coloring is to minimize 
the number of colors used while satisfying the adjacent 
constraint. The minimum total of colors needed to color the 

graph is called chromatic numbers, denoted (G). 

 

Fig  8. Graph with chromatic numbers 

(source: 

https://mathworld.wolfram.com/ChromaticNumber.html) 

 
An empty graph has chromatic number 1 because all 

vertices are not connected, so we simply need one color to 
color the vertices. Complete graph—a simple graph in which 
every vertex connected to other vertices has chromatic 
number exact same as the total of vertices. For bipartite 
graph—the vertices can be split into two subsets, V1 and V2 
have 2 chromatic numbers. Additionally, a circular graph—a 
simple graph in which each vertex has 2 degrees, for odd 

vertices (G) = 3, whereas even vertices (G) = 2. The rest 
of the graphs cannot be stated in general. Thus, we need 
Welsh-Powell Algorithm to discover the chromatic numbers 
of random graphs.  

Graph coloring has a wide range of practical applications, 
for instance scheduling, compiler optimization, and wireless 
communication. Those fields are applying graph coloring 
methods to assign resource efficiently while avoiding 
conflict between connected elements. 

F. Weighted Graph  

A weighted graph is a type of graph where each edge is 

assigned a numerical value called a weight. These weights 

usually represent some form of cost, distance, time, 

capacity, or strength of connection between two vertices. 

 
Fig  9. Weighted graph example 

(source : 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf) 

 

G. The Welsh-Powell Algorithm 

The Welsh-Powell Algorithm is a popular greedy 
technique used to approximate a valid vertex coloring of a 
graph. There are several steps to apply this algorithm, first, 
we need to calculate the degree of each vertex and sort the 
vertices in descending order based on the degrees. Second, 
assign the first color to the highest degree of vertex. Then, 
set the same color as the previous color to the vertex which is 
not adjacent to the vertices that have been colored. Finally, 
once the current color cannot be used further, move on to the 
next uncolored vertex and assign a new different color. 
Those steps are repeated until all vertices have been 
specified with no such same color for vertex which is 
adjacent with others. 

III. IMPLEMENTATION 

This section presents the practical implementation of 
graph coloring techniques aimed at minimizing channel 
interference in wireless networks. The simulation is built 
upon the theoretical concepts discussed earlier, including 
graph modeling, weighted graphs, and the Welsh-Powell 
coloring algorithm. Specifically, the implementation 
involves constructing an interference graph based on the 
physical proximity of access points (APs), applying a graph 
coloring strategy to assign non-conflicting channels, and 
visualizing the results for clarity.  

To accomplish this, we utilize the Python programming 
language along with several essential libraries. The 
NetworkX library is employed to manipulate and analyze the 
graph structures, while Matplotlib is used for graphical 
visualization of the network and its colored nodes. The 
standard math module supports geometric distance 
calculations (Euclidean distance), which is fundamental for 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://mathworld.wolfram.com/ChromaticNumber.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

constructing the weighted interference graph. These tools 
collectively enable a comprehensive simulation of a wireless 
network and facilitate the evaluation of coloring strategies in 
a realistic, distance-aware environment. In the following 
parts, we provide detailed explanations of the python script 
which are used to build the graph. 

A. Setting Access Points Position 

The implementation begins with defining the spatial 
configuration of wireless networks. A dictionary named 
ap_positions is used to store the coordinate of each AP in a 
two-dimensional plane. These positions are vital because 
later they will be used to calculate the physical distance 
between APs using the Euclidean formula. The assumption 
here is that the spatial proximity of APs directly influences 
the likelihood of signal interference, which will be modeled 
through a weighted graph. 

B. Interference Detection Function 

To determine whether two access points are close enough 
to interfere with one another, a function called is_interfering 
is defined. The function takes two positions tuples as inputs 
and an optional parameter threshold which default to 15 
meters. Within the function, the Euclidean distance between 
the two points is calculated using the formula √((x₁ − x₂)² + 
(y₁ − y₂)²). The function returns True if the calculated 
distance is less than or equal to the threshold. 

 

Fig  10. Function of interference detection 

(source : Author’s code) 

 

C. Constructing Interference Graph 

Furthermore, a weighted graph is constructed to represent 
the potential interference relationship between APs. The 
graph is initialized as an undirected graph using the 
NetworkX library.  

 

Fig  11. Code for constructing interference graph 

(source : Author’s code) 

 

Each AP is first added as node in the graph using a simple 

loop over the ap_positions dictionary. Later, a nested loop 

compares every possible pair of APs. For each pair 

(excluding self-comparisons), the is_interfering function is 

called to determine if the APs close enough to interfere. If 

they are, the Euclidean distance between them will be 

calculated and rounded to two decimal places. After that, an 

edge is added to the graph and form a weighted interference 

graph as a result. The presence of an edge signifies that two 

APs are withing interference range and the edge weight 

shows the physical distance between them.  

 

D. Implementing Welsh-Powell Algorithm 

The Welsh-Powell Algorithm is implemented to prevent 
two interfering APs using the same channel (colors). This 
greedy coloring algorithm begins with sorting the nodes of 
the graph in descending order based on their degree. A 
dictionary called color_assignment is used to store the 
assigned color for each AP. The algorithm iterates through 
the sorted list of nodes and assigns the first available color to 
each node, so it does not conflict with any of its neighbors. 
Once all nodes have been processed, the function will return 
the final color assignment which maps each AP to its 
assigned channel. 

 

Fig  12. Function of Welsh-Powell algorithm 

(source : Author’s code) 

 

E. Coloring and Chromatics Number  

The result of the Welsh-Powell Algorithm will be stored 
in color_result which is a dictionary that maps each AP to 
channel number (represented as color). The total number of 
channels used is stored in chromatic_number by converting 
the color values into a set and measuring its length. This 
value represents the minimum number of channels needed to 
ensure that no interfering APs share the same channel. 

 
Fig  13. Chromatics number output 

(source : Author’s code) 

 

F. Generating Adjacency Matrix and List 

Moreover, to provide a more formal representation of 
graph structure, we added adjacency matrix and list for the 
output. To form an adjacency matrix, first, a sorted list of 
APs is created to standardize the order of nodes. Then, a 
dictionary index_map, maps each AP name to a numerical 
index. A square matrix of zeros is initialized using list 
comprehension. After that, the code loops through each edge 
and sets the corresponding entries in the matrix to 1, 
indicating that an edge exists between those two APs. The 
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matrix is symmetrical because we created an undirected 
graph. 

In addition to the adjacency matrix, the adjacency list is 
also generated. It is formed by looping through each node in 
the graph and retrieving its neighbors using the 
G.neighbors() function. Each list of neighbors is sorted for 
readability and stored in a dictionary. 

 

Fig  14. Code for Adjacency matrix and list 

(source : Author’s code) 
 

IV. TESTING 

To evaluate the performance and adaptability of the 
proposed graph coloring method in different deployment 
conditions, three test cases have been designed with distinct 
positions of access points (APs). Each scenario simulates a 
specific type of network density and signal overlaps. 

A. Test Case 1 

This test case will lead to the worst scenario, all APs are 

placed close enough that the distance between any two of 

them is less than or equal to the interference threshold. This 

leads to a complete graph, where every APs must use a 

unique channel 

 
Fig  15. (Test case 1) AP positions 

 

 
Fig  16. (Test case 1) Output 

 

 
Fig  17. (Test case 1) Graph 

 

The outcome is a fully connected graph, requiring the 

maximum number of distinct channels, (G) = 6. 

B. Test Case 2 

This case simulates a more realistic layout. Some APs are 
close enough to interfere, while others are positioned far 
apart.  

 

Fig  18. (Test case 2) AP positions 

 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

 
Fig  19. (Test case 2) Output 

 

 
Fig  20. (Test case 2) Graph 

 

The graph shows that several APs are placed far apart from 

each other, resulting in  a sparse interference graph. For 

instance, there are no edges connected to AP6 which 

indicates that the distance between AP6 and all other APs 

exceed the threshold and thus is not considered to interfere 

with any of them. As a result, AP6 can safely use channel 1, 

same as AP2 and AP5. 

 

C. Test Case 3 

In this scenario, every AP is deliberately placed at 

distance greater than the interference threshold.  

 
Fig  21. (Test case 3) AP positions 

 

 
Fig  22. (Test case 3) Output 

 

 

 
Fig  23. (Test case 3) Graph 

 
The result is a graph with no edges (empty graph). Thus, 

every APs can share the same channel, (G) = 1. 

V. CONCLUSION 

Graph coloring offers a structured and efficient solution 
to the challenge of minimizing channel interference in 
wireless networks. By assuming access points (APs) as 
vertices and modelling interference through edges based on 
physical distance, the frequency assignment problem can be 
transformed into mathematical framework. 

Through the implementation of the Welsh-Powell 
Algorithm, frequency channels are assigned to avoid 
conflicts between interfering APs, whilst also minimizing the 
total number of channels used. The results of the three test 
cases show that physical layout of APs significantly 
influences the channel efficiency (chromatic number). 

The visualizations of the graphs, adjacent matrices and 
lists provide intuitive and analytical confirmation of the 
algorithm’s behavior. These representations also make the 
observations clearer of how interference spreads spatially 
across different AP  arrangements. 
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To conclude, by leveraging additional Python libraries, 
NetworkX and Matplotlib, it is possible to simulate and 
visualize graph-based models of wireless networks 
effectively. The integration of theoretical foundations with 
practical implementation allows the simulation to minimize 
the number of channels required and adapt efficiently to 
various network configurations. 

 

VI. APPENDIX 

Github Link:  

https://github.com/stefaniangeline/Makalah-Matematika-

Diskrit.git 

 

Youtube Link:  

https://youtu.be/XjBWSZc8XI0?si=q-uO9IdpKFk_C5mP 
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