
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Minimizing Channel Interference in Wireless

Networks Using Graph Coloring Techniques

Stefani Angeline Oroh - 13524064

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: angelineoroh15@gmail.com , 13524064@std.stei.itb.ac.id

Abstract—This paper discusses a practical strategy for

reducing wireless network interference by leveraging graph

coloring techniques. In densely populated wireless

environments, overlapping signals from multiple access points

(APs) can result in signal disruption. In our model, each AP

will be represented as a vertex in a graph, and an edge between

any two vertices indicates possible interference. To better

reflect real world signal behavior, we construct a weighted

graph based on the Euclidean distance between APs and apply

a distance threshold to determine which APs are likely to

interfere. This filtered interference graph is then colored using

the Welsh-Powell algorithm, assigning wireless channels (as

colors) to APs such that adjacent vertices receive different

assignments. A simulation involving six APs demonstrates the

effectiveness of applying graph theory concepts to address real

world challenges in wireless communications.

Keywords—graph coloring; interference reduction; wireless

network; weighted graph; Welsh-Powell algorithm.

I. INTRODUCTION (HEADING 1)

Wireless networks play a significant role in modern
communication systems, enabling the transmission of data
over radio frequencies without using physical cables. These
networks typically consist of multiple access points (APs)
that broadcast signals within a limited radius. In
environments, where several APs are installed in proximity,
such as apartment buildings, educational institutions, or
offices, signal overlap is inevitable. It causes interference,
which can significantly degrade the quality of services,
including dropped connections, reduced data throughput, and
higher latency.

One key method of interference mitigation is channel
assignment—allocating different frequency channels to APs
to prevent overlapping usage. However, the limited number
of available channels and varying distances between APs
make this problem non-trivial. This is when graph theory
from math discrete becomes a valuable tool.

The channel allocation issue can be abstracted as a graph
coloring problem, where APs are represented as vertices, and
edges are drawn between APs that may interfere. To make
this model more realistic, we use a weighted graph based on
the Euclidean distance between APs and only connect APs
that have distance less than the threshold. Each vertex will be

colored with no two same vertices share the same color,
thereby reducing the channel interference.

In this work, we apply the Welsh Powell graph coloring
algorithm to this problem. This greedy algorithm is well-
suited for such applications as it prioritizes highly connected
nodes and assign colors in a structured way.

II. BASIC THEORY

A. Graph Theory

In general, graph is defined as G = (V,E) with V as
vertices and E as edges. V is a set of non-empty vertices,
while E is a set of edges which connect a pair of vertices. In
short, a graph must consist at least one vertex, but it is
allowed to not have any edges at all. Additionally, the
number of edges connected to that vertex is defined as
degree.There are two types of graphs, namely simple graph
and unsimple-graph. As it is sound, simple graph means that
there are not any loops or multiple edges, whereas unsimple-
graph has the opposite definition of simple graph.

Fig 1. Simple and Unsimple graphs examples

(source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf)

Graph G1 shows the instance of simple graph, whilst G2

and G3 represent the usimple graph. From G2, the edges e3 =
(1,3) and e4 = (1,3) are known as multiple or parallel edges
because these two edges are connecting the same two
vertices (1 and 3). Furthermore, in G3, e8 = (3,3) is called as a
loop because it starts and ends at the same vertex.

Unsimple graph is divided into two categories, multi-

graph which has multiple edges, but loops are not permitted

and pseudo-graph which is allowed to contain both parallel

edges and loops.

mailto:angelineoroh15@gmail.com
mailto:13524064@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 2. Types of unsimple graph

(source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf)

Lastly, based on orientation of direction, there are

undirected graphs and directed graphs. The difference

between them is that in every edge of directed graph

equipped with direction or an arrow.

Fig 3. Directed graph examples

(source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf)

B. Adjacency Matrix

There are three ways to represent the graphs, namely
adjacency matrix, incidency matrix, and adjacency list.
However, in this paper, we simply apply adjacency matrix
and list. A graph is called adjacency when two vertices are
directly connected with an edge. Each element aij of the
matrix is defined as 1 if vertex i is adjacent (connected) to
vertex j, and 0 if they are not connected. This matrix is useful
for understanding the structure of both undirected and
directed graphs.

Fig 4. Simple graph in adjacent matrix

(source: https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/)

Fig 5. Directed graph in adjacent matrix

(source: https://graphicmaths.com/computer-science/graph-

theory/adjacency-matrices/)

In the case of a simple (undirected) graph, the adjacency
matrix is symmetric. For example, in the graph with vertices
A, B, C, and D, the matrix shows that A is connected to B,
C, and D; C is also connected to D; and so on. Since the
connections go both ways in an undirected graph, if A is
connected to B, then B is also connected to A. Hence, the
matrix is mirrored along its diagonal.

On the other hand, for a directed graph, the adjacency
matrix does not need to be symmetric. Here, each entry aij

indicates a directed edge from vertex i to vertex j. For
instance, vertex W has directed edges to W itself (a loop), as
well as to X, Y, and Z. Meanwhile, vertex Z has outgoing
edges to W and X. This directed relationship is clearly
reflected in the matrix, where rows represent the source
vertices and columns represent the destination vertices.

C. Adjacency List

Another way to represent the graph is using an adjacency
list. Unlike the adjacency matrix, which uses 2D array, an
adjacency list represents a graph as a collection of lists which
contain the vertices that are directly connected. For instance,
in an undirected graph, if vertex A is connected to vertices B
and C, then the adjacency list will have an entry for A listing
B and C, and entries for B and C listing A.

Fig 6. Simple graph in adjacent list

(source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/21-Graf-Bagian2-2024.pdf)

D. Isomorphic Graph

Two graphs that are structurally the same but look
different geometrically are called isomorphic graphs.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 7. Isomorphic graph examples

(source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/21-Graf-Bagian2-2024.pdf)

Graph G1 and G2 are said to be isomorphic because there is

a one-to-one correspondence between their vertices and

between their edges, such that the adjacent relationships are

preserved. In other words, if an edge in graph G1 connects

vertices u and v, then the corresponding edge e’ in graph G2

must connect the corresponding vertices u’ and v’.

E. Graph Coloring

In general, there are two ways to color a graph: edge
coloring and vertex coloring. However, in this paper, we will
focus solely on vertex coloring, as it directly relates to the
assignment of wireless channels in a network. In vertex
coloring, each vertex is assigned to a color, and two adjacent
vertices are not allowed to share the same color

The primary objective of graph coloring is to minimize
the number of colors used while satisfying the adjacent
constraint. The minimum total of colors needed to color the

graph is called chromatic numbers, denoted (G).

Fig 8. Graph with chromatic numbers

(source:

https://mathworld.wolfram.com/ChromaticNumber.html)

An empty graph has chromatic number 1 because all

vertices are not connected, so we simply need one color to
color the vertices. Complete graph—a simple graph in which
every vertex connected to other vertices has chromatic
number exact same as the total of vertices. For bipartite
graph—the vertices can be split into two subsets, V1 and V2
have 2 chromatic numbers. Additionally, a circular graph—a
simple graph in which each vertex has 2 degrees, for odd

vertices (G) = 3, whereas even vertices (G) = 2. The rest
of the graphs cannot be stated in general. Thus, we need
Welsh-Powell Algorithm to discover the chromatic numbers
of random graphs.

Graph coloring has a wide range of practical applications,
for instance scheduling, compiler optimization, and wireless
communication. Those fields are applying graph coloring
methods to assign resource efficiently while avoiding
conflict between connected elements.

F. Weighted Graph

A weighted graph is a type of graph where each edge is

assigned a numerical value called a weight. These weights

usually represent some form of cost, distance, time,

capacity, or strength of connection between two vertices.

Fig 9. Weighted graph example

(source :

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024

-2025/20-Graf-Bagian1-2024.pdf)

G. The Welsh-Powell Algorithm

The Welsh-Powell Algorithm is a popular greedy
technique used to approximate a valid vertex coloring of a
graph. There are several steps to apply this algorithm, first,
we need to calculate the degree of each vertex and sort the
vertices in descending order based on the degrees. Second,
assign the first color to the highest degree of vertex. Then,
set the same color as the previous color to the vertex which is
not adjacent to the vertices that have been colored. Finally,
once the current color cannot be used further, move on to the
next uncolored vertex and assign a new different color.
Those steps are repeated until all vertices have been
specified with no such same color for vertex which is
adjacent with others.

III. IMPLEMENTATION

This section presents the practical implementation of
graph coloring techniques aimed at minimizing channel
interference in wireless networks. The simulation is built
upon the theoretical concepts discussed earlier, including
graph modeling, weighted graphs, and the Welsh-Powell
coloring algorithm. Specifically, the implementation
involves constructing an interference graph based on the
physical proximity of access points (APs), applying a graph
coloring strategy to assign non-conflicting channels, and
visualizing the results for clarity.

To accomplish this, we utilize the Python programming
language along with several essential libraries. The
NetworkX library is employed to manipulate and analyze the
graph structures, while Matplotlib is used for graphical
visualization of the network and its colored nodes. The
standard math module supports geometric distance
calculations (Euclidean distance), which is fundamental for

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/21-Graf-Bagian2-2024.pdf
https://mathworld.wolfram.com/ChromaticNumber.html
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

constructing the weighted interference graph. These tools
collectively enable a comprehensive simulation of a wireless
network and facilitate the evaluation of coloring strategies in
a realistic, distance-aware environment. In the following
parts, we provide detailed explanations of the python script
which are used to build the graph.

A. Setting Access Points Position

The implementation begins with defining the spatial
configuration of wireless networks. A dictionary named
ap_positions is used to store the coordinate of each AP in a
two-dimensional plane. These positions are vital because
later they will be used to calculate the physical distance
between APs using the Euclidean formula. The assumption
here is that the spatial proximity of APs directly influences
the likelihood of signal interference, which will be modeled
through a weighted graph.

B. Interference Detection Function

To determine whether two access points are close enough
to interfere with one another, a function called is_interfering
is defined. The function takes two positions tuples as inputs
and an optional parameter threshold which default to 15
meters. Within the function, the Euclidean distance between
the two points is calculated using the formula √((x₁ − x₂)² +
(y₁ − y₂)²). The function returns True if the calculated
distance is less than or equal to the threshold.

Fig 10. Function of interference detection

(source : Author’s code)

C. Constructing Interference Graph

Furthermore, a weighted graph is constructed to represent
the potential interference relationship between APs. The
graph is initialized as an undirected graph using the
NetworkX library.

Fig 11. Code for constructing interference graph

(source : Author’s code)

Each AP is first added as node in the graph using a simple

loop over the ap_positions dictionary. Later, a nested loop

compares every possible pair of APs. For each pair

(excluding self-comparisons), the is_interfering function is

called to determine if the APs close enough to interfere. If

they are, the Euclidean distance between them will be

calculated and rounded to two decimal places. After that, an

edge is added to the graph and form a weighted interference

graph as a result. The presence of an edge signifies that two

APs are withing interference range and the edge weight

shows the physical distance between them.

D. Implementing Welsh-Powell Algorithm

The Welsh-Powell Algorithm is implemented to prevent
two interfering APs using the same channel (colors). This
greedy coloring algorithm begins with sorting the nodes of
the graph in descending order based on their degree. A
dictionary called color_assignment is used to store the
assigned color for each AP. The algorithm iterates through
the sorted list of nodes and assigns the first available color to
each node, so it does not conflict with any of its neighbors.
Once all nodes have been processed, the function will return
the final color assignment which maps each AP to its
assigned channel.

Fig 12. Function of Welsh-Powell algorithm

(source : Author’s code)

E. Coloring and Chromatics Number

The result of the Welsh-Powell Algorithm will be stored
in color_result which is a dictionary that maps each AP to
channel number (represented as color). The total number of
channels used is stored in chromatic_number by converting
the color values into a set and measuring its length. This
value represents the minimum number of channels needed to
ensure that no interfering APs share the same channel.

Fig 13. Chromatics number output

(source : Author’s code)

F. Generating Adjacency Matrix and List

Moreover, to provide a more formal representation of
graph structure, we added adjacency matrix and list for the
output. To form an adjacency matrix, first, a sorted list of
APs is created to standardize the order of nodes. Then, a
dictionary index_map, maps each AP name to a numerical
index. A square matrix of zeros is initialized using list
comprehension. After that, the code loops through each edge
and sets the corresponding entries in the matrix to 1,
indicating that an edge exists between those two APs. The

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

matrix is symmetrical because we created an undirected
graph.

In addition to the adjacency matrix, the adjacency list is
also generated. It is formed by looping through each node in
the graph and retrieving its neighbors using the
G.neighbors() function. Each list of neighbors is sorted for
readability and stored in a dictionary.

Fig 14. Code for Adjacency matrix and list

(source : Author’s code)

IV. TESTING

To evaluate the performance and adaptability of the
proposed graph coloring method in different deployment
conditions, three test cases have been designed with distinct
positions of access points (APs). Each scenario simulates a
specific type of network density and signal overlaps.

A. Test Case 1

This test case will lead to the worst scenario, all APs are

placed close enough that the distance between any two of

them is less than or equal to the interference threshold. This

leads to a complete graph, where every APs must use a

unique channel

Fig 15. (Test case 1) AP positions

Fig 16. (Test case 1) Output

Fig 17. (Test case 1) Graph

The outcome is a fully connected graph, requiring the

maximum number of distinct channels, (G) = 6.

B. Test Case 2

This case simulates a more realistic layout. Some APs are
close enough to interfere, while others are positioned far
apart.

Fig 18. (Test case 2) AP positions

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Fig 19. (Test case 2) Output

Fig 20. (Test case 2) Graph

The graph shows that several APs are placed far apart from

each other, resulting in a sparse interference graph. For

instance, there are no edges connected to AP6 which

indicates that the distance between AP6 and all other APs

exceed the threshold and thus is not considered to interfere

with any of them. As a result, AP6 can safely use channel 1,

same as AP2 and AP5.

C. Test Case 3

In this scenario, every AP is deliberately placed at

distance greater than the interference threshold.

Fig 21. (Test case 3) AP positions

Fig 22. (Test case 3) Output

Fig 23. (Test case 3) Graph

The result is a graph with no edges (empty graph). Thus,

every APs can share the same channel, (G) = 1.

V. CONCLUSION

Graph coloring offers a structured and efficient solution
to the challenge of minimizing channel interference in
wireless networks. By assuming access points (APs) as
vertices and modelling interference through edges based on
physical distance, the frequency assignment problem can be
transformed into mathematical framework.

Through the implementation of the Welsh-Powell
Algorithm, frequency channels are assigned to avoid
conflicts between interfering APs, whilst also minimizing the
total number of channels used. The results of the three test
cases show that physical layout of APs significantly
influences the channel efficiency (chromatic number).

The visualizations of the graphs, adjacent matrices and
lists provide intuitive and analytical confirmation of the
algorithm’s behavior. These representations also make the
observations clearer of how interference spreads spatially
across different AP arrangements.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

To conclude, by leveraging additional Python libraries,
NetworkX and Matplotlib, it is possible to simulate and
visualize graph-based models of wireless networks
effectively. The integration of theoretical foundations with
practical implementation allows the simulation to minimize
the number of channels required and adapt efficiently to
various network configurations.

VI. APPENDIX

Github Link:

https://github.com/stefaniangeline/Makalah-Matematika-

Diskrit.git

Youtube Link:

https://youtu.be/XjBWSZc8XI0?si=q-uO9IdpKFk_C5mP

VII. ACKNOWLEDGEMENT

First of all, author would like to thank God Almighty for
giving the health and strength to complete this paper, titled
“Minimizing Channel Interference in Wireless Networks
Using Graph Coloring Techniques”.

The author also extends appreciation to Mr. Arrival Dwi
Sentosa, S.Kom.,M.T., lecturer of Discrete Mathematics
(IF1220) for class K02, owing to his guidance and
continuous support throughout the learning process.

The deepest thanks are also addressed to the author’s
parents, whose support and encouragement have been a
constant source of motivation to finish this paper.

Lastly, the author would like to thank all friends and
classmates who have contributed through discussion,
collaboration, and moral support during the writing of this
paper.

REFERENCES

[1] Munir, Rinaldi. 2023. "Graf (Bag. 1)". Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian1-2024.pdf.[Accessed: 16 June 2025].

[2] Munir, Rinaldi. 2023. "Graf (Bag. 2)". Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-
Graf-Bagian2-2024.pdf. [Accessed: 16 June 2025].

[3] Munir, Rinaldi. 2023. "Graf (Bag. 3)". Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-
Graf-Bagian3-2024.pdf. [Accessed: 16 June 2025].

[4] M. Mujahid, “Graph Coloring with NetworkX,” Medium, Aug. 22,
2018. Available: https://medium.com/data-science/graph-coloring-
with-networkx-88c45f09b8f4. [Accessed: 17 June 2025].

[5] Mayank, Mohit. 2021. "Visualizing Networks in Python". Available:
https://towardsdatascience.com/the-new-best-python-package-for-
visualising-network-graphs-e220d59e054e/. [Accessed: 17 June
2025].

[6] McBride, Martin. 2023. "Adjacency matrices". Available:
https://graphicmaths.com/computer-science/graph-theory/adjacency-
matrices/. [Accessed: 16 June 2025].

[7] Weisstein, Eric W. 2025. "Chromatic Number". Available:
https://mathworld.wolfram.com/ChromaticNumber.html. [Accessed:
16 June 2025].

STATEMENT

I hereby declare that the paper I wrote is my own writing,

not an adaptation or translation of someone else's paper, and

it is not plagiarized.

Bandung, 20 June 2025

Stefani Angeline Oroh, 13524064

https://github.com/stefaniangeline/Makalah-Matematika-Diskrit.git
https://github.com/stefaniangeline/Makalah-Matematika-Diskrit.git
https://youtu.be/XjBWSZc8XI0?si=q-uO9IdpKFk_C5mP
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/22-Graf-Bagian3-2024.pdf
https://medium.com/data-science/graph-coloring-with-networkx-88c45f09b8f4
https://medium.com/data-science/graph-coloring-with-networkx-88c45f09b8f4
https://towardsdatascience.com/the-new-best-python-package-for-visualising-network-graphs-e220d59e054e/
https://towardsdatascience.com/the-new-best-python-package-for-visualising-network-graphs-e220d59e054e/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://graphicmaths.com/computer-science/graph-theory/adjacency-matrices/
https://mathworld.wolfram.com/ChromaticNumber.html

